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ABSTRACT
One of the primary objectives in MBSE is to transform am-

biguous and inconsistent natural language into coherent and con-
cise SysML models. By automating this process, individuals can
significantly benefit from reduced manual effort. However, recent
research has encountered various challenges, including limited
input, reliance on user involvement, impractical application of
results, and poor generalization of methods. In this study, we in-
troduce a novel application of deep learning to generate SysML
diagrams and present a framework GST. GST uses deep learning
techniques to extract SysML diagram fragments from the text that
has been split into sentences, and integrates them to form a SysML
model. We have constructed a labeled dataset and implemented
an instance of GST to confirm its feasibility. The experimental
results demonstrate that GST is capable of automatically con-
verting unstructured natural language inputs into SysML models.
The entire generation process does not necessitate user involve-
ment, and the resulting outputs in XMI format can be directly
imported into modeling software, allowing for subsequent mod-
ifications and additional modeling tasks. The implementation
code for GST instance and the labeled dataset is available at
GST-example-code.
Keywords: SysML diagram, Deep learning, Text-to-diagram,
Automated diagrams from text, XMI

1. INTRODUCTION
The inherent fuzziness, incompleteness, and complexity of

natural language pose significant challenges in the domains of
knowledge retrieval, reuse, analysis of design solutions, and man-
agement of design changes[1]. Model-Based Systems Engineer-
ing (MBSE) strives to generate coherent and precise models as
a replacement for traditional documentation by using Systems
Modeling Language (SysML). Manual construction of SysML
models is a time-intensive endeavor. Therefore, the development

∗Corresponding author: ysliu@cad.zju.edu.cn

of a fully automated approach to transform natural language into
SysML models becomes imperative. Current studies either utilize
inputs that are not in natural language [1, 2], which imposes lim-
itations, or present results using separate diagramming software
[1, 3], without actual integration into modeling software. Alter-
natively, they employ rule-based approaches [1, 3], resulting in
poor generalization, or rely on varying degrees of user involve-
ment [3], thus lacking sufficient automation. Deep Learning (DL)
can eliminates the need for manual rule formulation, minimizes
human intervention, and achieves superior performance and gen-
eralization. However, exploring the application of deep learning
in automating the generation of SysML diagrams remains an un-
derexplored research topic.

Our research has designed a framework named GST (Gen-
erate SysML diagrams from Text), which facilitates the seamless
transformation of unstructured natural language into SysML dia-
grams autonomously. GST adheres to the "split-extract-integrate"
principle. It initially splits text into semantically complete sen-
tences. An entity-relation extraction model is then employed to
extract implied triples from each sentence, with each triple rep-
resenting a fragment of the SysML model. Subsequently, rule-
based algorithms are utilized to integrate the disparate triples into
a cohesive SysML model. Finally, graphical information is in-
corporated into the model, resulting in the output of an XMI file
containing both the model information and graphical representa-
tion. The results indicate that GST can generate initial BDD and
IBD automatically, requiring no human intervention, and the gen-
erated XMI file can be directly imported into modeling software,
enabling users to refine and conduct subsequent work based on
the preliminary results.

2. RELATED WORKS
2.1 Automatic Generation of SysML Diagrams and UML

Diagrams
Currently, there is a scarcity of research on the automatic

generation of SysML diagrams. [1] proposed a method for gener-

1 Copyright © 2024 by ASME

https://drive.google.com/file/d/1s-GMGkV84gzpiUqxXZZqe6ZGQQIVtzNE/view?usp=sharing


ating SysML diagrams, from a recursive object model, by defining
transformation rules. [2] proposed a specification guideline that
commences with a partial SysML model and a set of requirements
to automatically generates SysML diagram. [3] utilizes tradi-
tional NLP tools and heuristic rules to directly generate SysML
diagrams from unstructured natural language text. This research
introduces a dedicated software to display the SysML diagrams,
requiring users to adjust threshold parameters. The structural di-
agrams in SysML are highly similar to UML diagrams, including
class diagrams and composite structure diagrams [4]. Therefore,
we conducted a thorough review of previous research on gener-
ating UML diagrams. Past research on UML diagram generation
primarily relied on traditional NLP techniques, augmented with
heuristic rules or rule algorithms [5–13]. Moreover, research
such as [6, 9, 10, 12, 13] prescribed stringent requirements for
the input text, specifying adherence to particular specifications,
formats, templates, or constraint conditions. [14] summarized
the existing work, finding that much of this research necessi-
tates substantial user intervention and interaction, with only a few
methods achieving full automation. [15] merged natural language
patterns with machine learning to achieve complete automation.
[16] introduced deep learning models to discover diverse rules
for transforming natural language text into models. Similarly,
[17] showed that deep learning eliminates the need for manually
defining an extensive set of rules, exhibits superior generaliza-
tion, fully automates the entire process, and requires no additional
effort from users.

The findings from the aforementioned research indicate that
traditional approaches entail various limitations, including im-
posing high input requirements that do not involve natural lan-
guage text, utilizing semi-automated methods, depending on cus-
tomized rules, requiring user involvement. And most of re-
searches tend to generate results on specific drawing software
which impedes its application in actual modeling software, hin-
dering subsequent user modifications and adjustments. In con-
trast, deep learning-based methods no longer depend on rules,
eliminating the manual definition and maintenance of rules,
thereby expediting the automation process and enhancing the
method’s applicability.

2.2 Joint Entity and Relation Extraction
It is evident from previous research that the generation of

structural diagrams primarily involves extracting named entity
nouns and their relationships. It was called Named Entity Recog-
nition (NER), and Relation Extraction (RE) in deep learning.
Recent studies have demonstrated that simultaneously address-
ing NER and RE can lead to improved outcomes. The tradi-
tional sequential approach of independently handling NER and
RE may entail challenges such as error propagation and infor-
mation redundancy [18–20]. [18] centers around deep learning
and presents a systematic exploration and summary of the most
recent advancements in NER and RE. The model introduced
in [21] presents a pioneering labeling scheme that harmonizes
entity and relationship tagging, thereby transforming the joint
entity-relation extraction task into a sequence labeling approach.
Various studies, including[19, 20, 22–24], have proposed distinct
models for jointly extracting entity relations. These models aim to

tackle the diverse challenges in this field and achieve exceptional
performance.

These studies employ entity-relation extraction models to
retrieve triples that encompass entities and their relationships.
Applying entity-relation extraction models to SysML diagram
generation associates the subject and object entities in the triples
with the blocks, while the predicate relationships in the triples
correspond to the relationships between these blocks. With the
advancement of this field, a plethora of models are available for
reference.

2.3 XMI
Current methods pose limitations in various aspects. Some

methods lack an interactive interface, preventing user from updat-
ing the extracted models [25]. Others rely on dedicated software
or specialized drawing software to display the models. Conse-
quently, the generated results are confined to specific software,
resulting in a lack of independence from the modeling software
and limited model portability.

XMI (XML Metadata Interchange) effectively resolves the
mentioned issue. It is utilized to exchange metadata informa-
tion of models through XML (eXtensible Markup Language)
representation. And it offers a standardized representation of
metadata information in models[26]. Major CASE tools support
XMI export and import [27, 28]. Storing models as XMI format
files allows for their transfer between various software applica-
tions that support XMI. These studies [5–7, 29, 30] employ XMI
to store and represent the models, which are subsequently im-
ported into modeling tools for visualization. Moreover, These
studies[31, 32] utilize XMI to represent models, which facilitates
their subsequent work.

XMI is employed to store the resulting models, enabling their
importation into any XMI-compatible software for presentation
and convenient modification by subsequent users. Given its status
as an industry standard, nearly all modeling tools provide support
for XMI.

3. GST
GST framework divides the generation process of SysML

diagrams into three key stages, including five steps in total. The
initial stage named pre-processing, which comprises the process-
ing and segmentation of input documents into sentences to fulfill
the input requirements of the subsequent stage’s entity relation
extraction model. The second stage is dedicated to entity rela-
tion extraction, utilizing mainstream joint extraction models for
entities and relations, extracting Subject-Predicate-object(SPO)
triples from the sentences. Input for this stage consists of a
group of sentences composed in natural language, while the out-
put comprises a group of triples consisting of entities and their
relationships. The third and final stage is post-processing. Ini-
tially, all the triples are consolidated into a hierarchical structure,
which concisely and comprehensively describes the model struc-
ture information. Subsequently, the content of this hierarchical
structure, along with added graphical information, is used to
generate XMI. Consequently, XMI files encompass the model in-
formation and view information, serving as the ultimate output of
the GST framework. Users can import the XMI files into familiar
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modeling software to view the constructed model and facilitate
further work. Each step’s output becomes the subsequent step’s
input, providing a fully automated process. Users need only sub-
mit documents containing natural language texts to receive XMI
files containing model information. GST framework is visually
presented in Figure. 1.
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FIGURE 1: The GST framework

3.1 Text Extraction
This step aims to manage input from various document for-

mats. If the input consists of plain text documents, this step can
be omitted. Otherwise, different formats of text content should
be initially extracted into a .txt document during this stage. The
purpose is to convert natural language into plain text format, facil-
itating subsequent processing steps. However, as the focus of this
study does not lie on these techniques, no specific implementation
methods are provided. Users are granted the autonomy to choose
and integrate their preferred methods for extracting text content
from other formats within the framework. This step yields a .txt
document that encompasses the extracted plain text content.

3.2 Sentence Division
The objective of this step is to partition the entire text into a

set of semantically coherent sentences. The input for this stage
is a .txt document generated in the preceding step. The quality
of the resulting sentence segmentation directly impacts the ef-
fectiveness of the entity relation extraction model. Because the
model operates at the sentence level to extract SPO. Only when
the segmented sentences possess a relatively comprehensive se-
mantic coherence, can the model genuinely achieve its intended
efficacy. Sentence segmentation commonly employs rule-based
methods, such as utilizing punctuation marks. Deep learning
techniques can also be employed for sentence segmentation, en-
abling to autonomously discern patterns and leading to improved

generalization and performance, which needs manual segmen-
tation to establish the training dataset. The output of this step
comprises a collection of individual sentences.

3.3 Entity and Relation Extraction
The entity relation extraction stage represents the fundamen-

tal step of this framework. This stage operates on a set of sen-
tences generated in the preceding step. Our study employs the
entity relation joint extraction model to extract SPO triples from
each sentence. The subject and object components within each
SPO align with blocks or part properties in BDD and IBD, while
the predicate verb corresponds to relationships in BDD and IBD.
Notably, these relationships are predefined within BDD and IBD
and may not manifest explicitly within the original sentence. An
example of extracting SPO from text is illustrated in Figure. 2.
The resulting output of this step is a collection of SPO triples,
encapsulating SysML fragments.

FIGURE 2: Example of SPO Extraction

3.4 Fragment Integration
In this step, the group of SPO triples containing SysML frag-

ments, acquired in the previous step, undergoes an initial integra-
tion process. Disorganized textual descriptions of SPO impede
efficient data processing within the algorithmic program of next
step. Therefore, through the application of specific rule-based
algorithms, these scattered SPO triples are consolidated and or-
ganized into a tree-like structure, expressed in XML format. Next
step can subsequently create corresponding XMI elements sys-
tematically, following the established hierarchy within the tree
structure. During the integration process, tailored rules can be
implemented to handle exceptional scenarios, such as the identi-
fication and removal of duplicate elements. Hence, the output of
this step entails an initial depiction of the SysML model structure,
presented in the preliminary form of BDD.xml.

3.5 XMI Generation
In this step, the previously obtained BDD.xml file undergoes

further refinement according to the XMI specifications of SysML.
This process involves accurately mapping the information derived
from BDD and IBD diagrams to their corresponding labels and
attributes within the XMI representation. However, the crucial
graphical visualization information required for displaying the
BDD and IBD diagrams is absent. It fails to incorporate specific
instructions on how these elements should be visually depicted
and arranged on the diagrams[28]. Within the GST step, visual-
ization information is manually specified. For our specific case,
we have assigned a default value to these visual attributes.

Upon completion of these steps, the final XMI is generated,
encompassing the extracted model information from natural lan-
guage texts as well as the incorporated graphical visualization
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details. By effortlessly importing this XMI file into their pre-
ferred modeling software, users can effectively present the auto-
matically generated model and corresponding views. The entire
workflow is fully automated, eliminating the necessity for any
manual intervention.

4. EXAMPLE
In this section, we present specific methods or models for

each step in the framework, implement a code-based instance of
GST, validate its feasibility by inputting text content, and demon-
strate the results using modeling software. Our example is based
on Chinese text. The text content is provided in a .txt file as our
input in Figure. 3. It is crucial to highlight that the main focus of
our research is not on the formatting of input text. Consequently,
we chose not to utilize alternative file formats like PDF, but rather
opted for the most basic format, namely text files (txt). Conse-
quently, the example we provide does not involve the initial step
of text extraction.

FIGURE 3: Input text

4.1 Sentence Division
We employ a straightforward rule-based method, utilizing

standard Chinese punctuation marks “。！？；：，” in con-
junction with line breaks to demarcate sentence boundaries. As
the next step necessitates JSON format input, we incorporate a
"text" field to denote the original text and store the segmented
sentences in a JSON file. The specific segmentation outcomes
are visually depicted in Figure. 4, serving as the input for the
subsequent stage of the entity relation joint extraction model.

FIGURE 4: Result of pre-process

4.2 Entity and Relation Extraction
To train the entity relation joint extraction model used in

this study, we manually constructed a dataset. The construction
of the dataset drew inspiration from the DuIE dataset[33], while
the source of the original texts comprised 34 invention patents
from diverse domains obtained from the Chinese Patent web-
site. The dataset is meticulously annotated with blocks and their

corresponding composite association in BDD, as well as part
properties and connector relations in IBD. For example, the raw
text is:

“四旋翼式火星飞行器包括系统模块、机身模块，机身
模块的上端安装有系统模块”

"A quadcopter-style Mars flyer includes a system module and
a body module, with the system module installed on the upper end
of the body module"

The obtained data after annotation is illustrated in Figure. 5.

FIGURE 5: The obtained data after annotation

In the example, we constructed a total of 1655 annotated
data points, which were subsequently divided into training and
validation sets at a ratio of 9:1. A dedicated test set was not
created. Instead, a larger portion of the data was allocated for
training the model.

Based on the baseline model provided in [21] and the
LIC2021 Relation Extraction Competition organized by Baidu,
we convert the joint entity relation task into a sequence labeling
task. We assign three labels to each token based on its posi-
tion within the entity span (Begin, Inside, Other)(B, I, O)[21].
Furthermore, we distinguish the B label by associating it with
a specific predicate. Our focus lies on two types of predicates:
composite associations in BDD and connector in IBD, as spec-
ified in a defined schema collection. Taking into account the
predicates, along with the cases of head entity and tail entity,
we assign a total of four B labels. We subsequently merge the
I and O labels, resulting in a total of six labels for each token,
as depicted in Figure. 6. For sequence labeling and extraction
of the SPO triples, we employ a three-layer roBERTa pre-trained
model, which provides enhanced support for Chinese compared
to models like BERT [34]. As the final step, we feed the set of
sentences acquired from the pre-processing procedures into the
trained model, ultimately yielding a collection of SPO triplets
encompassing SysML fragments.

4.3 Fragment Integration
In order to construct a comprehensive tree structure that de-

lineates the SysML model framework (in XML format), we ad-
here to explicit guidelines to systematically organize the disparate
SPO elements procured from the preceding step.

We have formulated the following rules to generate a com-
prehensive tree structure that encompasses the BDD and IBD
information of the model:
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FIGURE 6: The model and sequence labeling example

a) The first entity in the text is created as the root node.

b) Before creating, check if the node is already created, and
ignore the duplicated node.

c) In addition to being created as part properties, the head entity
and tail entity of the connector relationship are also created
as blocks and added to the root node.

d) The connector relationship is created as the "to" node under
the node corresponding to the subject of that relationship,
with the "element_name" being the object.

e) The connector relationships between part properties that do
not belong to the same block are ignored.

Upon applying the rule-based algorithm to the series of SPO
generated in the preceding step, we have obtained a comprehen-
sive XML file that elucidates the model structure, as demonstrated
in Figure. 7. This XML file has been designated as "BDD.xml"
and will serve as input for the subsequent phase.

FIGURE 7: Result of fragment integration

4.4 XMI Generation
The input for this step is the BDD.xml generated in the

previous step. The XMI to be generated consists of two main
parts: the model part and the graphical part. The model part
contains the information describing the SysML model structure
from the BDD.xml generated in the previous step. The graphical
part is used to visualize the SysML model and present the BDD
and IBD diagrams within the model. By combining the model
with the graphical data, it can be imported into modeling software
to generate the SysML model, BDD, and IBD, and visualize the
pre-drawn BDD and IBD diagrams for the user.

Firstly we introduce the overall structure of the model part
illustrated in Figure. 8. The root node of the whole model part
is the node labeled as "uml:Model" located under the XMI root
node. All the information of the model is encompassed in the
"PackagedElement" named "System Architecture" under this root
node. The system architecture package comprises three main
components: BDD that describes the entire model architecture,
the blocks contained in the BDD, and the composite associations
among these blocks. For the entirety of the model, we have only
designated a single BDD as we believe it sufficiently captures the
entire model architecture. This BDD is named "Overall Archi-
tecture". Within each block, based on the composite association
information of the block, the part properties owned by the block
will be created. If a block possesses part property, we generate an
IBD specific to this block. Subsequently, based on the connector
relationships among the part properties, we establish connectors.
These three elements, part properties, IBD, and connectors, exist
at the same level and are associated with the same owner block.

FIGURE 8: The SysML model in XMI

The XMI components corresponding to blocks, part prop-
erties, composite associations, and connector relationships are
specifically depicted in Figure. 8. Our primary concern centers
around establishing the correspondence between SysML model
elements and their respective XMI labels. Detail map between
SysML elements and XMI tags is illustrated in Table. 1. Fur-
thermore, the "Extension" under the "system architecture" "pack-
agedElement" corresponds to the BDD, while the IBD corre-
sponds to the "Extension" present within the block. The process
of mapping SysML model elements to XMI labels and attributes
is conducted either recursively or sequentially, according to the
BDD.xml tree generated in the preceding step.

For every SysML diagram generated within the model part,
an Extension node is appended beneath the XMI root node to
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TABLE 1: Map between SysML elements and XMI tags

SysML element XMI tag tag attribute

block packagedElement name=block
composite association packagedElement name=""
part property ownedAttribute aggregation="composite"
connector ownedConnector type="Connector"

hold the graphical data necessary for rendering the diagram. This
encompassing information encompasses the coordinates and di-
mensions of each block, as well as the coordinates, types of the
connections and so on. The Extension node maintains close as-
sociation with the diagram nodes in the previous model part,
enabling seamless navigability.

The Extension, exhibited in Figure. 9, encapsulates the
graphical data of the BDD. The first "mdElement" node assumes
the role of delineating the diagram frame characteristics, thereby
defining the area for diagrammatic representation. Sequentially,
the "mdElement" nodes portray the graphical attributes of the
blocks. Each block within the model is associated with a singular
"mdElement" of this type, illustrating the specific block coordi-
nates, dimensions, colors, and other pertinent details. Finally, the
"mdElement" nodes correspond to the graphical information of
composite associations, portraying them as distinct arrow sym-
bols within the software application. We specified that all con-
nection lines are in straight form. In the Extension that represents
the graphical information of the IBD, as depicted in Figure. 10,
the "mdElement" nodes portray the graphical information of the
DiagramFrame, part property, and connectors, the same as the
BDD.

FIGURE 9: The graphical part of BDD in XMI

Default values have been set for these graphical representa-
tions. In BDD, block coordinates are generated based on a pre-
determined interval, following a top-to-bottom and left-to-right
hierarchy of these blocks. Blocks at the same level are aligned in
rows. Conversely, the IBD employs a random function to gener-
ate block coordinates within the drawing area. This randomness
stems from the fact that IBD relationships are structured as graphs
rather than hierarchies, making it challenging to algorithmically
arrange coordinates systematically.

In conclusion, the model part encompasses information per-
taining to the composition structure and internal relationships of
the model, whereas the graphical part addresses SysML diagram

FIGURE 10: The graphical part of IBD in XMI

presentation. It is worth noting that real-world scenarios may
necessitate additional information, customized extensions, and
related elements within the XMI file. However, these are beyond
the scope of this study. The robust extension capabilities of the
XMI standard, along with the flexibility of XML, allow us to
avoid the inclusion of excessive and unnecessary information.

Finally, the generated XMI file will be named "im-
port_MD.xml" and imported into the modeling software M-
Design for visualization. M-Design is a robust commercial mod-
eling software known for its strong support for both Chinese
and English. It has extensive applications in practical engineer-
ing modeling and offers import and export functionality for XMI
files. The resulting model, along with BDD and IBD, is displayed
in M-Design, which can be found in Appendix. A.

5. DISCUSSION
During the pre-processing stage, the consideration of differ-

ent text input formats was neglected. Thus, the content extraction
step was not implemented in the provided examples. However,
it is important to note that there is a scarcity of pure text doc-
uments that solely consist of natural language, while document
formats like PDF are more prevalent. Therefore, within the GST
framework, we propose the integration of a content extraction
pre-processing step, envisioning the future capability of GST to
process inputs across all common formats. Regarding sentence
segmentation, we employed a simplistic rule that adequately han-
dles typical semantically complete sentences. Nevertheless, this
rule is not without its limitations. For instance, a sentence such
as "A car, contains four wheels" would be segmented into two
sentences based on our rule, despite its semantic coherence as a
single sentence. Consequently, the implementation of sentence
segmentation that considers semantics is crucial. It may be ad-
vantageous to explore deep learning methods to discover semantic
relationships between sentences, offering a promising avenue for
sentence segmentation.
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FIGURE 11: Example of DuIE dataset

In the entity relation extraction stage, we have trained a model
using an annotated dataset and applied it to the example of GST
framework. However, our annotated dataset is limited in scope,
focusing solely on the block and composite associations of BDD,
as well as the part property and connector relationships of IBD.
Users have the flexibility to augment the annotated dataset based
on their specific requirements. Users can expand the dataset by
incorporating additional natural language raw texts or enhance the
annotated dataset by annotating attributes of BDD blocks, addi-
tional relationships between blocks, port information in IBD, and
so on. By following the data annotation patterns of DuIE dataset
described in [33], as illustrated in Figure. 11, we can successfully
expand our dataset and generate more comprehensive and refined
BDD and IBD results through deep learning techniques.

The key distinction between the example in Figure. 11 and
our annotated dataset is the incorporation of additional fields
within the "object" and "object_type" category to provide more
comprehensive object-related information. Furthermore, our
dataset allows for the inclusion of supplementary sub-fields un-
der the "subject," "predicate," and "object" fields, enabling the
description of additional details pertaining to the entity and re-
lationship, such as inherent properties of block and connection
multiplicities. As for the model aspect, since our research pri-
marily focuses on other aspects rather than optimizing extraction
performance, we employ a basic pre-trained model for sequence
labeling, aligning with our annotation scheme. Regrettably, this
model only achieves an F1-score of 0.6799 on our constructed
training set. However, due to the inherent flexibility of the GST
approach, various components within the intermediate steps, in-
cluding the model used in this particular phase, can be inter-
changed. Recent studies have produced numerous highly effec-
tive models for jointly extracting entity relations. Moreover, users
have the option to construct models more tailored to the extrac-
tion of SysML model elements based on the characteristics of the
annotated dataset.

In the post-processing stage, specifically in the fragment
integration part, we have defined distinct rules for generating
comprehensive BDD and IBD structures. Rule c results in a sig-
nificant proliferation of first-level nodes beneath the root node.
Because our aim is to generate a SysML model with a single root
block, hence the adoption of this rule. However, it can inadver-
tently result in the creation of incorrect composite associations.
According to Rule e, our research refrains from considering inter-
block connections for part properties and does not generate IBD

to describe such across-levels relationships. These connections
pose significant challenges for the graphical representation part of
the XMI, as it requires displaying the owner block of part property
and even port information on block boundaries. For generating
the XMI, we construct a single BDD for the entire SysML model.
However, if there is a large number of blocks, this approach might
lead to an excessively complex BDD. It may be more appropriate
to divide it into multiple BDD. Additionally, an IBD is created for
each block featuring part property. In cases where there are no
connector relationships between part properties, the IBD solely
consists of scattered part properties without any connecting lines.
In this case, IBD are unnecessary for such block, but our rules
inadvertently generate redundant IBD. Random coordinates are
assigned to the blocks during the generation of graphical informa-
tion for IBD. This can result in disorderly distribution and partial
overlapping of blocks within the generated IBD. Straight lines are
used to connect the blocks throughout the entire graphical rep-
resentation. However, it is difficult to avoid line crossings in the
IBD, leading to an aesthetically less pleasing layout. Readability
may be compromised when there are numerous blocks and lines.

From the results displayed in the modeling software, it is vi-
sually apparent that a redundant block named "Support" was ex-
tracted, while the connector relationship between the body mod-
ule and the system module was not captured. These issues can be
attributed to poor performance in extracting entity relationships
model. Further examination of the input and output in the entity
relation extraction stage revealed the extraction of redundant and
incorrect SPO triples, with some SPO triples not being extracted.
Subsequent processing addressed overlapping and logically erro-
neous SPO triples, although there were still logically correct SPO
triples included in the generation of BDD and IBD, despite the
absence of such semantics in the original text. These issues can
be attributed to the inadequate extraction capability and domain
suitability of the model, as well as the limited annotated dataset
that failed to cover a wide range of natural language sentence
patterns.

In conclusion, the GST framework demonstrates a prelimi-
nary capability to generate BDD and IBD from natural language
text. However, there remain several areas that necessitate further
improvement.

6. CONCLUSION AND FUTURE WORK
Our research proposes a deep learning based framework GST

that automatically generates BDD and IBD in the SysML model
from natural language text. We implemented a instance of in-
stance, validated its feasibility, and imported the results into
modeling software to demonstrate the visualized outcomes. The
results showed that GST automatically generated the majority of
the expected content in BDD and IBD. GST offers high flexibil-
ity, allowing users to freely replace components. The entire GST
process is fully automated and does not require manual interven-
tion. Moreover, GST imposes no specific requirements on the
input text and is independent of modeling tools, enabling direct
import into modeling software for subsequent tasks. Future re-
search can explore to incorporate external knowledge bases into
the input phase of GST to enhance the input text and generate
perfect BDD, IBD or other SysML diagrams.
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FIGURE 12: The generated BDD displayed in M-Design

FIGURE 13: The generated IBD-1 displayed in M-Design

FIGURE 14: The generated IBD-2 displayed in M-Design
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